Карл Фридрих Гаусс (нем. Johann Carl Friedrich Gauß; 30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген) — выдающийся немецкий математик, астроном и физик, считается одним из величайших математиков всех времён.
Математический талант Гаусса проявился ещё в детстве. По легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат 50×101=5050.
С 1795 по 1798 Гаусс учился в Гёттингенском университете, где 30 марта 1796 доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Кроме того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки, показав, что если n — простое число, то оно должно быть вида (числом Ферма). Этому открытию Гаусс придавал большое значение и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.
В 1799 г. Гаусс доказал основную теорему алгебры о том, что уравнение n-й степени с одной переменной имеет ровно n решений в комплексных числах
Математический талант Гаусса проявился ещё в детстве. По легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат 50×101=5050.
С 1795 по 1798 Гаусс учился в Гёттингенском университете, где 30 марта 1796 доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Кроме того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки, показав, что если n — простое число, то оно должно быть вида (числом Ферма). Этому открытию Гаусс придавал большое значение и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.
В 1799 г. Гаусс доказал основную теорему алгебры о том, что уравнение n-й степени с одной переменной имеет ровно n решений в комплексных числах
1 комментарий:
http://ru.wikipedia.org/wiki/%D0%93%D0%B0%D1%83%D1%81%D1%81,_%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85
Отправить комментарий